

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

SCHEME & SYLLABUS OF POSTGRADUATE DEGREE COURSE Master of Computer Applications III-IV Semester

Effective for the students admitted in year 2020-21 and onwards.

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

Approved by 7th AC Meeting held on 1st Nov. 2021 (Agenda 7.6).

MCA SECOND YEAR: Semester III								
Course Code	Course Title	Type of Paper	Contact Hours Per Week	Exam Hrs	Internal Assess ment	End Ter m Exa m	Total	Credits
MCA 321	Mobile Application Development	Theory	03	03	20	80	100	03
MCA 322	Computer Graphics	Theory	03	03	20	80	100	03
MCA 323	Data Science	Theory	03	03	20	80	100	03
	Elective-I	Theory	03	03	20	80	100	03
	Elective-II	Theory	03	03	20	80	100	03
MCA 324	Mobile Application Development Lab	Practical	03	03	60	40	100	03
MCA 325	Computer Graphics	Practical	03	03	60	40	100	03
MCA 326	Data Science Lab Using R	Practical	03	03	60	40	100	03
MCA 327	#Research Paper and Presentation	Practical	02	02	30	20	50	02
Total Credits for III Semester85026								
#It is suggested to have Technical Paper Writing Course and in End Term Examination there should be a								
presentation of a research paper and submit the papers with below 20% Plagiarism report.								

Elective - I

Sr. No.	Course Code	Course Name
1	MCAE331A	Artificial Intelligence & Machine Learning
2	MCAE332A	Internet of Things
3	MCAE333A	Natural Language Processing
4	MCAE334A	Soft Computing

Elective - II

Sr. No.	Course Code	Course Name
1	MCAE341B	Deep Learning
2	MCAE342B	Web Intelligence and Big Data
3.	MCAE343B	Software Quality Management
4.	MCAE344B	Information Security

Course Code	Course Title	Type of Paper	Contact Hours Per Week	Exam Hrs	Internal Assess ment	End Ter m Exa m	Total	Credits
MCA 421	Industrial/Field Training	Practical	-	-	150	200	350	09
MCA 422	Dissertation & Seminar	Practical	4	-	60	40	100	03
Total Credits for IV Semester450					12			
Total Credits for MCA90					90			

MCA SECOND YEAR: Semester IV

Industrial/Field Training: Every candidate shall undertake an Industrial/Field Training during their IV semester in consultation with the faculty guide.

The important points to be considered are:

1. Industrial/Field Training shall be related to his/her subjects of MCA or to any other functional area. An internal mentor/guide shall be appointed for each student. It is mandatory for the student to seek advance written approval from the internal mentor and Head of Department about the topic and organization before commencing the Industrial/Field Training. Internal mentor/guide needs to take regular update during the period to evaluate the actual working of the student.

2. The students need to submit the report within 2 weeks' time after completion of Industrial/Field Training period. And this report will be evaluated via internal and external Viva-Voce.

4. Industrial/Field Training can be carried out in any MNC, Voluntary Organization, NGO, MSME, Public Sector Units, Society, and Cooperative etc. on any research project dealing in IT and its related domain.

5. The work may be based on primary / secondary data or may be an operational assignment involving working by the student on a given task/assignment/project/ etc. in an organization / industry.

Dissertation

The project report should contain the following:

•Original copy of the Approved Performa and Project Proposal.

•Certificate of Originality (Format given).

• Project documentation.

•A CD consisting of the executable file(s) of the complete project should be attached on the last page of the project report. In no case, it should be sent separately. The student needs to retain the identical copy of the CD that should be carried while appearing for the viva-voce along with the project report.

Project Documentation:

• Project documentation may be about 100 to 125 pages (excluding coding).

•The project documentation details should not be too generic in nature.

• Appropriate project report documentation should be done, like, how you have done the analysis, design,

coding, use of testing techniques/strategies, etc., in respect of your project.

•The project report should normally be printed with single line spacing on A4 paper (one side only). All the pages, tables and figures must be numbered. Tables and figures should contain titles.

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

•Two copies of the original project report in the bound form along with the CD (containing the executable file(s) of the project should be enclosed in the last page) is to be prepared at the time of final viva. One copy of the same Project Report and the CD containing the executable file(s) shall be retained by the student, which should be produced before the examiner at the time of viva-voce

MANUAL FOR PREPARATION OF MCA Project (Prescribed Format and Specification) Essential Components of Project Report

- a. Title Page
- b. Certificate from Company
- c. Certificate from Guide
- d. Acknowledgement
- e. Index with printed Page Numbers

CHAPTER 1 : INTRODUCTION

- 1.1 Company/Educational Institute Profile
- 1.2 Existing System and Need for System
- 1.3 Scope of Work
- 1.4 Operating Environment Hardware and Software

CHAPTER 2: PROPOSED SYSTEM

- 2.1 Proposed System
- 2.2 Objectives of System
- 2.3 User Requirements

CHAPTER 3: ANALYSIS & DESIGN

- 3.1 Entity Relationship Diagram (ERD)
- 3.2 System Architecture
- 3.3 Database Requirements & User Interfaces
- 3.4 Data Flow Diagram (DFD)
- 3.5 Data Dictionary
- 3.6 Table Design
- 3.7 Code Design
- 3.6 Menu Screens
- 3.7 Input Screens
- 3.8 Report Formats
- 3.9 Test Procedures and Implementation

CHAPTER 4: User Manual

- 4.1 User Manual
- 4.2 Operations Manual / Menu Explanation
- 4.3 Forms and Report Specifications
- Drawbacks and Limitations
- **Proposed Enhancements**
- Conclusions
- Bibliography

Annexure:

- Annexure 1: Input Forms with data
- Annexure 2: Output Reports with Data
- Annexure 3: Sample Code

BIKANER TECHNICAL UNIVERSITY, BIKANER बीकानेर तकनीकी विश्वविद्यालय, बीकानेर OFFICE OF THE DEAN ACADEMICS

SYLLABUS OF POSTGRADUATE DEGREE COURSE Master of Computer Applications III-IV Semester

Effective for the students admitted in year 2020-21 and onwards.

Office: Bikaner Technical University, Bikaner Karni Industrial Area, Pugal Road, Bikaner-334004 Website: <u>https://btu.ac.in</u>

Approved by 7th AC Meeting held on 1st Nov. 2021 (Agenda 7.6).

Course Code: MCA 321 Course Title: Mobile Application Development

Unit	Contents				
Ι	INTRODUCTION: Introduction to mobile applications - Market and business drivers for mobile				
	applications - Difficulties in Mobile Development- Mobile Myths- When to Create an App- Types of				
	Mobile App. Design Constraints for mobile applications, both and software related, Architecting mobile				
	applications, user interfaces for mobile applications, touch events and gestures.				
II	ADVANCED DESIGN: Designing applications with multimedia and web access capabilities Integration				
	with GPS and social media networking applications – Accessing applications hosted in a cloud computing				
	environment – Design patterns for mobile applications – Understanding Application users, Information				
	Design, Achieving quality constraints.				
III	TECHNOLOGY I ANDROID : Establishing the development environment Android architecture Android				
	Application Structure, Emulator- Android virtual device, UI design, Fragments, Activity, Services,				
	Distances Interestion with semier side application. Becant Advancement				
***	Advanced Andraid: Using Google Mana, CDS and Wi Ei Integration, Andraid Natification, Audio				
IV	Auvanced Android. Using Google Maps, GFS and WI-FI Integration, Android Notification, Addio Managar, Pluatooth, Camera and Sansor Integration, Sanding SMS, Phone Calls, Publishing Android				
	Application				
N/	TECHNOLOGY II IOS : Introduction to Objective C iOS features III implementation Touch frameworks				
v	Data persistence using Core Data and SOLite. Action and Outlets Delegates and Storyboard Location				
	aware applications using Core Location and Man Kit integrating calendar and address book with social				
	media application Using Wifi iPhone marketplace.				
Text Bo	ooks:				
• Jeff	McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012				
• Cha	rlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012				
Referen	ice Books:				
• Dav	• David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the				
iOS	iOS SDK", Apress, 2013.				
• Jam	• James Dovev and Ash Furrow, "Beginning Objective C", Apress, 2012				
• Pau	• Paul Deitel, Harvey Deitel, Abbey Deitel and Michel Morgano. "Android for Programmers an App-Driven				
App	Approach", Pearson, 2012				
• Neil	Smyth "Android studio 2.2 Development Essentials 7th Edition" Payload Media 2017				
• Jero	me Dimarzio "Beginning Android Programming with Android Studio" Wiley Publication				

Course Code: MCA 322 Course Title: Computer Graphics

Unit	Contents				
Ι	Elements of graphics workstation, Video Display Devices, Raster Scan Systems, Random Scan systems,				
	Input devices, Graphics Software Coordinate Representations, Fundamental Problems in Geometry, Line				
	drawing algorithms, DDA Algorithm, Bradenham's Line Algorithm, Frame buffers, Circle and Eclipse				
	generating algorithms, Midpoint Circle Algorithm, Sean-line polygon fill algorithm, Inside-Outside tests,				
	Sean- Line fill of curved Boundary Areas. Boundary fill Algorithm, Flood fill Algorithm.				
II	Graphics Primitives: Primitive Operations, The display file interpreter-Normalized Device Coordinates,				
	Display- File structure, Display file algorithm, Display control and Polygons, polygon representation,				
	Attributes of output primitives: Line attributes - Line type, Line width, curves, Pen and Brush options, Line				
	Color, Color and gray scale levels, Color-tables, gray scale, Area- Fill Attributes- Fill styles, Pattern fill,				
	soft fill, Character generation, Character Attributes, Text attributes				
III	Geometric Transformations: Matrices, Scaling Transformations, Sin and Cos Rotation, Homogeneous Co-				
	ordinates and Translation, Co-ordinate Translations, Rotation about an arbitrary point, Inverse				
	Transformations, Transformations Routines, 2-D Viewing- The viewing pipeline, viewing co-ordinate,				
	Reference Frame, Windows to view ports, co-ordinate transformation 2-D Viewing functions, Clipping				
	operations point clipping, Line clipping. Cohen-Sutherland Line Clipping, Polygon clipping, Sutherland				
	Hodge man clipping.				
IV	3-D concepts, Three-dimensional Display Methods Parallel projection, Perspective projection, Visible line				
	and surface identification, Surface rendering, Three-Dimensional Object representations, Bezier curves and				
	surfaces, B -Spline curves and surfaces, Visibility, Image and object precision Z- buffer algorithm, Floating				
	norizons				
V	Computer Animation: Design of Animation Sequences, General Computer Animation Functions-Raster				
	Aminations, Key Frame Systems, Morphing Simulating Accelerations, Motion Specifications, Kinematics				
and Dynamics.					
Text Do					
•	• Hearn D and Baker M.P., Computer Graphics, Second Edition, PHI.				
•	Foley J.D., van Dam A, Fiener S.K. and Hugnes J.F., Computer Graphics, Addison Wesley.				
•	Newman W.M. and Sproull R.F. Principles of Interactive Computer Graphics. Tata McGraw Hill				

• Newman W.M. and Sproull R.F., Principles of Interactive Computer Graphics, Tata McGraw F. Publishing Company Limited.

Reference Books:

- Hughes, Van Dam, et al. Computer Graphics Principles and Practice 3e, Pearson, 2014.
- P Shirley, Fundamentals of Computer Graphics, 2e, AK Peters, 2005.

Course Code: MCA 323 Course Title: Data Science

Unit	Contents			
Ι	Introduction			
-	What is Data Science, Need for Data Science, Components of Data Science, Big data, Facets of data:			
	Structured data, Unstructured data, Natural Language, Machine-generated data, Graph-based or network			
	data, Audio, image and video, Streaming data, The need for Business Analytics, Data Science Life Cycle,			
	Applications of data science			
II	Introduction to Big Data			
	Classification of Digital Data, Big Data and its importance, Four Vs, Drivers for Big data, Big data			
	analytics, Classification of Analytics, Top Challenges Facing Big Data, Responsibilities of data scientists,			
	Big data applications in healthcare, medicine, advertising			
III	Data Science Process			
	Overview of data science process, setting the research goal, Retrieving data, Cleansing, integrating and			
	transforming data, Exploratory data analysis, Data Modeling, Presentation and automation, Types of			
	Analytics: Descriptive analytics, Diagnostic analytics, Predictive analytics, Prescriptive analytics			
IV	Statistics			
	Basic terminologies, Population, Sample, Parameter, Estimate, Estimator, Sampling distribution, Standard			
	Error, Properties of Good Estimator, Measures of Centers, Measures of Spread, Probability, Normal			
	Distribution, Binary Distribution, Hypothesis Testing ,Chi-Square Test, ANOVA			
V	Data Science Tools and Algorithms			
	Basic Data Science languages- R, Python, Knowledge of Excel, SQL Database, Introduction to Weka,			
	Regression Algorithms: How Regression Algorithm Work, Linear Regression, Logistic Regression, K-			
	Nearest Neighbors Algorithm, K-means algorithm.			
Text Re	ooke:			
	nual Purma "Fundamentals of Data Science: Take the first Stan to Persona a Data Scientist". Ameron KDD			
• Samuel Burns, Fundamentals of Data Science: Take the first Step to Become a Data Scientist", Amazon KDP Printing and Publishing, First Edition, 2019				
• Davy Cielen, Arno D.B. Meysman, Mohamed Ali, "Introducing Data Science", Manning Publications, 2016				
Refere	nces:			

• Cathy O'Neil and Rachel Schutt, "Doing Data Science, Straight Talk From The Frontline", O'Reilly. 2014.

Course Code: MCA 324 Course Title: Mobile Application Development Lab

List of Experiments
1. Survey of Mobile Application Development Tools.
2. Form design for mobile applications.
3. Applications using controls.
4. Graphical and Multimedia applications.
5. Data retrieval applications.
6. Networking applications.
7. Gaming applications
8. Micro browser-based applications
9. Application explaining the Basic UI Design with all the relevant Fields
10. A Simple application illustrating styles and themes.
11. Call Log Notification Menu.
12. GUI Application.
13. Creating live Folders with search options.
14. A simple database application.
15. A simple offline search Engine.
Text Books:

- Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012
- Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012

Reference Books:

- David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013.
- James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012
- Paul Deitel, Harvey Deitel, Abbey Deitel and Michel Morgano, "Android for Programmers an App-Driven Approach", Pearson, 2012
- Neil Smyth "Android studio 2.2 Development Essentials 7th Edition" Payload Media 2017
- Jerome Dimarzio "Beginning Android Programming with Android Studio" Wiley Publication

Course Code: MCA 325 Course Title: Computer Graphics Lab

 Line Drawing Algorithms Circle Drawing Algorithms Ellipse Drawing Algorithms Polygon Filling Algorithms Basic Transformations Composite Transformations Composite Transformations Line Clipping Algorithms Polygon Clipping Algorithms Polygon Clipping Algorithms Curve Generations Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. 		List of Experiments
 Circle Drawing Algorithms Ellipse Drawing Algorithms Polygon Filling Algorithms Basic Transformations Composite Transformations Line Clipping Algorithms Polygon Clipping Algorithms Polygon Clipping Algorithms Curve Generations Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. Animation 	1. Line Draw	ving Algorithms
 Ellipse Drawing Algorithms Polygon Filling Algorithms Basic Transformations Composite Transformations Line Clipping Algorithms Polygon Clipping Algorithms Polygon Clipping Algorithms Curve Generations Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. Animation 	2. Circle Dra	uwing Algorithms
 Polygon Filling Algorithms Basic Transformations Composite Transformations Line Clipping Algorithms Polygon Clipping Algorithms Polygon Clipping Algorithms Curve Generations Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. Animation 	3. Ellipse Dr	awing Algorithms
 5. Basic Transformations 6. Composite Transformations 7. Line Clipping Algorithms 8. Polygon Clipping Algorithms 9. Curve Generations 10. Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing 11. To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. 12. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. 13. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. 14. To visualize projections of 3D and greater than 3D images. 15. Animation 	4. Polygon F	Filling Algorithms
 Composite Transformations Line Clipping Algorithms Polygon Clipping Algorithms Polygon Clipping Algorithms Curve Generations Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. Animation 	5. Basic Tran	nsformations
 Line Clipping Algorithms Polygon Clipping Algorithms Curve Generations Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. Animation 	6. Composite	e Transformations
 Polygon Clipping Algorithms Curve Generations Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. Animation 	7. Line Clipp	ping Algorithms
 9. Curve Generations 10. Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing 11. To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. 12. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. 13. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. 14. To visualize projections of 3D and greater than 3D images. 15. Animation 	8. Polygon C	Jlipping Algorithms
 Implementation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. Animation 	9. Curve Ger	nerations
 To perform 2D Transformations such as translation, rotation, scaling, reflection and sharing. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. To visualize projections of 3D and greater than 3D images. Animation 	10. Implemen	tation of 2D transformation: Translation, Scaling, Rotation, Mirror reflection and Shearing
 12. To implement Cohen-Sutherland 2D clipping and window-viewport mapping. 13. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling. 14. To visualize projections of 3D and greater than 3D images. 15. Animation 	11. To perform	n 2D Transformations such as translation, rotation, scaling, reflection and sharing.
13. To perform 3D and greater than 3D Transformations such as translation, rotation and scaling.14. To visualize projections of 3D and greater than 3D images.15. Animation	12. To implen	nent Cohen-Sutherland 2D clipping and window-viewport mapping.
14. To visualize projections of 3D and greater than 3D images.15. Animation	13. To perform	n 3D and greater than 3D Transformations such as translation, rotation and scaling.
15. Animation	14. To visuali	ze projections of 3D and greater than 3D images.
	15. Animation	1
Fext Books:	Text Books:	
• Donald Hearn and M.Pauline Baker, "Computer Graphics C Version", Pearson Education, 2003.	Donald He	earn and M.Pauline Baker, "Computer Graphics C Version", Pearson Education, 2003.
• Hughes, Van Dam, et al. Computer Graphics Principles and Practice 3e, Pearson, 2014.	• Hughes, V	an Dam, et al. Computer Graphics Principles and Practice 3e, Pearson, 2014.
• P Shirley, Fundamentals of Computer Graphics, 2e, AK Peters, 2005.	• P Shirley,	Fundamentals of Computer Graphics, 2e, AK Peters, 2005.

References:

- Foley J.D., Van Dam A, Fiener S.K. and Hughes J.F., Computer Graphics, Addison Wesley.
- Digital Animation Bible AVGERAKIF, Tata McGraw Hill.
- Newman W.M. and Sproull R.F., Principles of Interactive Computer Graphics, Tata McGraw Hill Publishing Company Limited.

Course Code: MCA 326 Course Title: Data Science Lab using R

	List of Experiments
1.	General Properties of R Language
2.	Decision Making
3.	Loop control
4.	Array
5.	Vector
6.	Matrices
7.	Factors
8.	Data Frames
9.	Packages
10). Data Reshaping
11	. Data and File Management
12	2. Charts & Graphs
13	B. Graphical Procedures
14	. plot function
15	5. Plot using base graphics
16	5. Plot using ggplot2
Fext]	Books:
•	Sandip Rakshit, R Programming for Beginners, Tata McGraw Hill Publishing Company Limited.
	• Niel I le Roux SugnetLubbe A step by step tutorial · An introduction into R application and

programming, Bookboon Learning

References:

r

• Hadley Wickham and Garrett Grolemund, "R for Data Science" O'Reilly

Course Code: MCAE 331A

Course Title: Artificial Intelligence and Machine learning

Unit	Contents
Ι	INTRODUCTION: Introduction to Artificial Intelligence, Foundations and History of Artificial
	Intelligence, Applications of Artificial Intelligence, Intelligent Agents, Structure of Intelligent Agents.
	Computer vision, Natural Language Processing.
II	INTRODUCTION TO SEARCH: Searching for solutions, Uniformed search strategies, Informed search
	strategies, Local search algorithms and optimistic problems, Adversarial Search, Search for
	Sames, Appla - Deta prunnig. KNOWI EDCE DEDDESENTATION & DEASONINC: Approaches to knowledge representation:
111	Propositional Logic First Order Predicate Logic Inference Rules (Modus Ponen Modus Tollen
	Resolution. And elimination. Syllogism). Production Rules. Types of knowledge.
	Reasoning: Forward and backward reasoning, Non-monotonic Reasoning, Reasoning with
	uncertainties.
IV	MACHINE LEARNING: Machine Learning basics, Why Machine learning, Types of
	Machine Learning Problems, Applications of ML, Data Mining Vs Machine Learning vs Big Data
	Analytics.
	Supervised Learning- Naïve Base Classifier, classifying with k-Nearest
.	Neighbour classifier, Decision Tree classifier, Naive Bayes classifier.
V	clustering Ensemble Learning (Boosting and Bagging) Neural Networks. Types of Neural networks
	Activation functions Feed forward Back Propagation Algorithm Recommender Systems Content based
	recommendations.
Text B	ooks:
•	Elaine Rich, Kevin Knight, & Shivashankar B Nair, Artificial Intelligence, McGraw Hill, 3rd ed., 2009
•	Stuart Russell, Peter Norving, "Artificial Intelligence: A Modern Approach", Pearson Education, 3rd edition,
	2010.
•	Ethem Alpaydın, Introduction to Machine Learning, PHI, Third Edition.
•	Tom Mitchell, Machine Learning, McGraw-Hill, First Edition,
Refere	nce Books:
•	Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Systems", Prentice Hall of India, 1 st edition, 1997.
•	Winston, Patrick, Henry, "Artificial Intelligence", Pearson Education, 3rd edition, 2004
•	Daniel Jurafsky, James H. Martin Speech and Language Processing: An Introduction to Natural Language
	Processing, Computational Linguistics and Speech, Pearson Publication, 2014.
•	Winston, LISP, Addision Wesley
•	Marcellous, Expert System Programming, PHI
•	ShaiShalev-Shwartz and Shai Ben David, Understanding Machine Learning From Theory to Algorithms,
	Cambridge University Press, First Edition.
•	Unristopher M. Bisnop, Pattern Recognition and Machine Learning, McGraw Hill,

Course Code: MCAE 332A Course Title: Internet of Thing

Unit	Contents			
Ι	The Internet of Things: An Overview of Internet of things, Characteristics, History and Evolution of IoT,			
	Physical Design of IoT: Things in IoT, IoT Protocols. Internet of Things Technology, behind IoTs Sources			
	of the IoTs,			
	Logical Design of IoT: Functional block, Communication Models and APIs, IoT Stack.			
II	Enabling Technologies: Sensors, Cloud Computing, Big Data analytics, Embedded Computing Boards,			
	Communication Protocols, IoT Challenges, IoT Levels, Overview of Domain Specific IoTs applications			
	Like Smart Cities, Smart Agriculture and Industrial IoT Applications.			
	The IoT Paradigm: Comparison with User interface related Technologies like SCADA,			
	M2M, SDN. 10T Design Methodology: 10T Components.			
111	Internet Vs Internet of Things: Io1 Layers, Io1 Messaging Protocols: MQIT, CoAP. Io1			
	Iransport Protocols: BLE, LIFI, Network Protocol: OLOWPAN.			
	Physical Design of 101: Functional Block, Cloud Storage Models, Communication Models,			
	Computing			
IV	Physical Devices and Endpoints: Arduino Pin diagram Arduino Architecture Arduino			
1 1	Programming Raspherry Pi Pin diagram Raspherry Pi Architecture			
	Sensors and Interfacing: Types of Sensors. Integrating Sensors: HDT (Humidity and			
	Temperature Sensor), Gas Detector, HC-05 (Bluetooth Module), Ultrasonic Sensor,			
	ESP8266 (Wi-Fi Module).			
V	Logical Design of IoT: Revisiting Python Programming for IoT (Data types, Operators,			
	Control Structures, List, Tuples, Dictionaries, Functions, Modules and File Handling).			
	Python Packages for connecting IoT Devices: Bluetooth, Sockets, Time, Requests, Sys,			
	Adafruit Python DHT, paho-mqtt, Python JSON, Python pip			
Text B	ooks:			
•	• S. K. Vasudevan, A. S. Nagarajan, RMD Sundaram, "Internet of Things", Wiley, 1st Edition, 2014.			
•	G. C. Hillar, "Internet of Things with Python", PACKT Publications, 1st Edition, 2016.			
•	V. Madisetti, A. Bahga, "Internet of Things: A Hands-on Approach", United Kingdom: Arsheep Bahga &			
	Vijay Madisetti, 1st Edition, 2015.			
Refere	nces:			

- J. C. Shovic, "Raspberry Pi IoT Projects: Prototyping Experiments for Makers", Apress, 1st Edition, 2016.
 - M. Schwartz, "Internet of things with the Arduino Yun", Packt Publishing Ltd., 1st Edition, 2014.
 - Hersent, D. Boswarthick, O. Elloumi, "The Internet of Things: Key Applications and Protocols", John Wiley & Sons, 1st Edition, 2012.
 - C. Dierbach, "Introduction to Computer Science using Python: A Computational Problem-Solving Focus", Wiley Publishing, 1st Edition, 2013.

Course Code: MCAL 333A Course Title: Natural Language Processing

Unit	Contents
Ι	Introduction
	Origins and challenges of NLP – Language Modelling: Grammar-based LM,
	Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers
	for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit
тт	Distance.
11	Unsmoothed N-grams Evaluating N-grams Smoothing Interpolation and
	Backoff – Word Classes, Part-of-Speech Tagging, Rule-based, Stochastic and Transformation based
	tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.
III	Syntactic Analysis: Context-Free Grammars, Grammar rules for English, Treebank's, Normal
	Forms for grammar - Dependency Grammar - Syntactic Parsing, Ambiguity, Dynamic
	Programming parsing – Shallow parsing – Probabilistic CFG, Probabilistic CYK, Probabilistic
TT 7	Lexicalized CFGs – Feature structures, Unification of feature structures
IV	Semantics And Pragmatics: Requirements for representation, First-Order Logic, Description
	between Senses Thematic Roles selection restrictions – Word Sense Disambiguation WSD
	using Supervised Dictionary & Thesaurus Bootstrapping methods – Word Similarity using
	Thesaurus and Distributional methods
V	Discourse Analysis And Lexical Resources : Discourse segmentation, Coherence – Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm – Co reference Resolution – Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WorldNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC)
Text B	ooks:
•	Daniel Jurafsky, James H. Martin—Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014
•	Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Edition, O'Reilly Media, 2009
Refere	nces:
•	Breck Baldwin, —Language processing with Java and Ling Pipe Cookbook, Atlantic Publisher, 2015
•	Richard M Reese, -Natural Language Processing with Java, O'Reilly Media, 2015
•	Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second, Chapman and Hall/CRC Press, 2010
•	Tanveer Siddiqui, U.S. Tiwary, -Natural Language Processing and Information Retrieval, Oxford University Press, 2008

Course Code: MCAE 334A Course Title: Soft Computing

Unit	Contents	
Ι	Introduction to Soft Computing	
	Introduction of Hard and Soft Computing, Unique features of Soft computing, Components of Soft	
	computing, Fuzzy Computing, Evolutionary Computation, Genetic Algorithm, Swarm Intelligence, Ant	
	Colony Optimizations, Neural Network, Machine Learning, Associative Memory, Adaptive Resonance	
тт	Theory, Introduction to Deep Learning.	
11	Neural Networks	
	Neural network architecture: single layer and multilayer feed forward networks, recurrent networks, Back	
	propagation networks architecture: perceptron model, solution, single layer artificial neural network.	
	multilayer perception model; back propagation learning methods, back propagation algorithm, applications.	
III	Fuzzy Logic	
	Basic concepts of fuzzy logic, Fuzzy sets and Crisp sets, Fuzzy set theory and operations, Properties of	
	fuzzy sets, Fuzzy and Crisp relations, Fuzzy to Crisp conversion, Membership functions, interference in	
	fuzzy logic, fuzzy if-then rules, Fuzzy implications and Fuzzy algorithms, Fuzzyfications &	
	Defuzzificataions, Fuzzy Inference Systems, Mamdani Fuzzy Model, Sugeno Fuzzy Model, Fuzzy	
IV	Controller, applications.	
1 V	Traditional optimization and search techniques. Genetic Algorithms: Basic concepts of GA working	
	principle, procedures of GA. Process flow of GA. Genetic representations. (encoding) Initialization and	
	selection, Genetic operators, Mutation, Generational Cycle, applications.	
V	Hybrid Systems	
	Integration of neural networks, fuzzy logic and genetic algorithms. GA Based Back Propagation	
	Networks, Fuzzy Back Propagation Networks, Fuzzy Associative Memories, Simplified Fuzzy	
	ARTMAP.	
Text B	ooks:	
٠	S. Rajasekaran and G.A.VijaylakshmiPai Neural Networks Fuzzy Logic, and Genetic Algorithms,	
	Prentice Hall of India 2007.	
•	K.H.Lee First Course on Fuzzy Theory and Applications, Springer-Verlag.	
•	D. K. Pratihar, Soft Computing, Narosa, 2008.	
•	JS. R. Jang, CT. Sun, and E. Mizutani, Neuro-Fuzzy and soft Computing, PHI Learning, 2009.	
Refere	References:	
•	J. Yen and R. Langari Fuzzy Logic, Intelligence, Control and Information, Pearson Education.	
•	N.P.Padny, "Artificial Intelligence and Intelligent Systems" Oxford University Press.	
•	Simon Haykin, Neural Networks and Learning Machines, (2nd Edn.), DILL Learning, 2011	
●	SILIOII HAYKIII, INCUTAI INCLWOIKS AND LEATHING MIACHINES, (STU EUR.), PHI LEATHING, 2011.	

Course Code: MCAE 341B Course Title: Deep Learning

Unit	Contents	
Ι	Introduction to Deep Learning (DL), Applications of deep Learning, Limitations of deep learning	
	algorithms, Artificial vs Biological Neurons, how do they learn? Perceptron, introduction to Artificial	
	Neural Network (ANN), Deep Neural Network, Transfer learning, Introduction to Feature Extraction vs	
	Fine Tuning.	
II	Deep Learning Tools - Python - Numpy, Pandas, Scikit-learn etc, Framework for deep learning algorithm	
	- TensorFlow, Keras, Google Colab etc, Popular Data repositories sources for machine learning practices	
	(UCI, Kaggle, Wikipedia, Google Dataset Search), Working with Google Colab: Uploading data, Creating	
	Data Generators, Working with OS Module, creating Val Dir, Training using 'fit_generator', Visualizing	
	Results.	
III	Neural Networks - output vs hidden layers, Linear vs Nonlinear Networks, Activation Functions: Sigmoid,	
	ReLU, Softmax. Loss function, Perceptron Training Rule, Multilayer Perceptron, Gradient Descent Rule.	
	Gradient Descent and Backpropagation: Gradient Descent, Stochastic Gradient Descent, Backpropagation	
	- recursive chain rule,	
IV	Introduction to Convolutional Neural Networks: Kernel filter, Principles behind CNNs, Multiple Filters,	
	CNN applications. Padding, Data Augmentation, Introduction to Recurrent Neural Networks: Introduction	
	to RNNs, LSTM, RNN applications.	
V	Optimization and Regularization: Overfitting and Capacity, Cross Validation, Feature Selection,	
	Regularization, Hyperparameters, dropout, batch normalization. Early stopping of training, Deep Learning	
	Applications: Image Processing, Natural Language Processing, Speech Recognition, Video Analytics,	
	Transfer Learning. Project Task - End-to-End Deep learning Model Development – Cat Vs Dog	
T (D	Classification,	
Text Bo	I ext Books:	
•	Ian Goodfellow, Deep Learning, Second edition, MIT Press, 2016.	
•	Nicholas Locascio, Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence	
	Algorithms O'Reilly 2017	

References:

- Peter Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data, , Cambridge University Press, 2012.
- Aurelien Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly, 2017.

Course Code: MCAE 342B Course Title: Web Intelligence and Big Data

Unit	Contents
Ι	Introduction Web Intelligence: Characteristics of the Web, Web structure, Retrieval vs. browsing, The
	long tail in Social networks. What is Web Intelligence, Benefit of Web Intelligence, Ingredients of Web
	Intelligence, Related Technology and Application. Information Retrieval: Document representation,
	Stemming, Term-Document Matrix, Standard Document collections.
II	Retrieval Model: Boolean retrieval Model, Vector space retrieval model, probabilistic information Model
	Evaluation Criteria: Precision and Recall, Confusion Matrix Architecture of a Web Search Engine: The
	crawler. Indexing systems, queries and ranking. Scalability. Ranking through link analysis.
III	Multimedia Search: images, audio and video Image and Short Text Mining: Text Pre-processing: Data
	Cleaning, Data Integration, Data Transformation, Segmentation Image Pre-Processing: Image histogram
	analysis, Noise cleaning, Segmentation Classification Algorithms: Linear Regression, Decision Tree, K-
	means, Naive Bayes
IV	Understanding Big Data: What is Big Data? Why Big Data? Big Data Applications, Big Data
	Analytics, Big Data Challenges. Introduction to NoSQL: Aggregate Data Models, Key-Value and
	Document Data Models, Graph Databases, Schema Less Databases, Big Data Solutions.
V	Introduction to Hadoop: Hadoop architecture, Hadoop Working, Advantages of Hadoop, HDFS
	Overview, Features of HDFS, HDFS Architecture Map reduce applications: Map Reduce workflows,
	Hadoop streaming, Components of Hadoop Ecosystem (HBase, Sqoop, Flume, PigLatin scripts. Hive),
Tort D	
Text B	
•	& Bartlett Learning, 2010.
•	Data Science and Big Data Analytics, Discovering, Analyzing, Visualizing and Presenting Data, Wiley
•	Nathan Marz, James Warren, "Big Data: Principles and Best Practices of Scalable Real Time Data Systems", Manning, 2015
-	Did De Dese Malault Davis Deserve Desfal Cose "Undere For Dynamics" John Wiley & Song 1st
•	Edition, 2014.
•	References:
•	Zhong, Zhongying, Liu, Jiming, Yao, Yiyu (Eds.), "Web intelligence", Springer, 1st Edition, 2003

• DT Editorial Services, "Big Data Black Book", Dreamtech Press, 2015.

Course Code: MCAE 343B Course Title: Software Quality Management

Contents
Fundamentals of Software Quality: Define Software Quality, Software Quality Assurance Context, Challenges of Software Quality, Environments for SQA, Relate Software Quality and the Software Development Life Cycle, Software Quality Assurance versus Software Quality Control
Software Quality Assurance: Components of Software Quality Assurance System, Software Requirements into Software Quality Factors, Product Operation, Revision and Transition Software Quality Factors, Alternative Models of Software Quality Factors, SQA Tools
Tailoring the Software Quality Assurance System: The SQA Architecture, Pre-ProjectComponents (Contract Review, Quality Plans), Software project life cycle components(Review, Audit planning and implementation, Testing), infrastructure and managementcomponents, Organizing SQA, Guidelines for SQA constructionParticipants in Software Quality Management: Understand SQA managementorganization, Describe management roles, organization, and activities.
ASE Tools in Software Quality: Overview of CASE Tool, Contribution of CASE Tool to Software Product, Software Maintenance and Software Project Quality Software Quality Metrics: Classification, Process Metrics, Product Metrics, Implementation and Limitations.
SQA Standards: Scope of Quality Standards, Six Sigma, Overview of ISO, CMMI, IEEE standards with examples Costs of Software Quality: Cost of Software Quality Metrics, Classic and extended model of cost of software quality, Application and Problems. Future of Software Quality: SQA Challenges and Capabilities
ooks:
Daniel Galin, "Software Quality Assurance: From Theory to Implementation", Addison Wesley, 1st Edition, 2003.Stephen Kan, "Metrics and Models in Software Quality Engineering", Addison Wesley, 2nd Edition, 2002.
Claude Y. Laporte, Alain April, "Software Quality Assurance", Wiley, 1st Edition, 2017.
nces: Schulmaver G. Gordon and McManus, James (eds), "Handhook of Software Quality Assurance," Prontice
Handbook of Software Quanty Assurance, Prenice Hall, 3rd Edition, 1999.
Boehm, B., Huang, L., Jain, A., and Madachy, R. "The ROI of Software Dependability: The iDAVE Model", Software, IEEE(21:3) 2004, pp 54-61

 Kshirasagar Naik, Priyadarshi Tripathy, "Software Testing and Quality AssuranceTheory and Practice," Wiley, 1st Edition, 2008.

Course Code: MCAE 344B Course Title: Information Security

Unit	Contents		
Ι	Introduction to Information Security: Definition, Availability, Confidentiality, Accuracy, Integrity and		
	Authenticity. Security Threats: Vulnerabilities, Threats, Attacks and Countermeasures, Secure Software		
	Development.		
II	Ethical Issues in Information Security: Law and Ethics in Information Security, International Law and		
	Legal bodies, Ethics and Information Security, Codes of Ethics. Managing IT Risk: Introduction, Risk		
	Management, Risk Identification, Risk Assessment, Risk Control Strategies, Risk Control Strategy,		
TTT	Quantitative and Quantative Risk Control.		
111	Security Fian: Concept, information Security Flamming and Governance, Policies, Standards, Fractices,		
	Technologies: Access Control: Identification Authentication Authorization and Accountability		
IV	Firewalls: Processing modes Structure Architecture Configuring Remote User Connections Access and		
	Authentication. Security Technology: Prevention System. Intrusion Detection: Intrusion Detection and		
	Prevention System, Operating System Fundamentals and Security Tools, Biometrics Access Controls.		
V	Implementing Information Security: Remote Computing Security, Security Project Management,		
	Technical Aspects of Implementation, Information Security Certifications. Maintenance: Security		
	Management Maintenance Models, Vulnerability Assessment, Introduction to Digital Forensics		
Text B	Text Books:		
•	Michael E Whitman and Herbert J Mattord, "Principles of Information Security", CENGAGE Learning, 4th		
	Edition, 2003.		
•	Mark Merkow, James Breithaupt, "Information Security: Principles and Practices", Pearson Education, 1st		
	Edition, 2007.		
•	Micki Krause, Harold F. Tipton, "Information Security Management Handbook, CRC Press LLC, 6th Edition, 2004.		
Referen	nces:		
•	Mark Rhodes, Ousley, "Information Security - The Complete Reference", McGraw Hill Education, 2nd		
	Edition, 2013.		
•	Matt Bishop, "Computer Security Art and Science", Pearson Education, 2nd Edition, 2002.		
•	Charles P. Pfleeger and Shari Lawrence Pfleeger, "Security in Computing", PHI, 4th Edition, 2006.		
•	William Stallings, "Cryptography and Network Security: Principles and Practices", Pearson Education, 4th Edition, 2005.		
•	Roberta Brag, Mark Rhodes-Ousley, "Network Security - The complete Reference", McGraw Hill Education, 2nd Edition, 2017.		